Week 8 - Friday

COMP 2100




= What did we talk about last time?

= 2-3 and red-black tree practice
= AVL trees
= Balancing trees by construction



Questions?




Project 2




Assignment 4




Hanby Elementary in Westerville is looking for mentors for two
orograms
FIRST LEGO League (Tuesdays 2:45—4:45 PM)

= Students research real-world problems and build and program LEGO EV3
Mindstorm robots to complete themed missions.

Girls Who Code (Mondays 2:45-3:45 PM)

= Girls Who Code students work on projects such as app or game design,
website creation, and 3D printing prototypes that solve real-world
problems.

Both are great opportunities to give back to the community and

build your resume

If interested, send me an e-mail




Hash Tables




= We can define a symbol table ADT with a few essential operations:
= put(Key key, Value value)
Put the key-value pair into the table
get(Key key):
Retrieve the value associated with key
delete(Key key)
Remove the value associated with key
contains(Key key)
See if the table contains a key
ISEmpty()
size()
= It's also useful to be able to iterate over all keys



= We have been talking a lot about trees and other ways to keep
ordered symbol tables

= Ordered symbol tables are great, but we may not always need
that ordering

= Keeping an unordered symbol table might allow us to improve
our running time



= Balanced binary search trees give us:

= O(log n) time to find a key
= O(log n) time to do insertions and deletions

= Can we do better?
= What about:

= O(2) time to find a key
= O(1) todo an insertion or a deletion



= We make a huge array, so big that we'll have more spaces in
the array than we expect data values
= We use a hashing function that maps keys to indexes in the

array
= Using the hashing function, we know where to put each key
but also where to look for a particular key



= Let's make a hash table to store integer keys
= Qur hash table will be 13 elements long
= Our hashing function will be simply modding each value by 13



= Insert these keys: 3, 19, 7, 104, 89

104

0 1 2 3 4 5 6 7 8 9 10 11 12



= Find these keys:

104

HEEEEEEEEEE

0 1 2 3 4 5 6 7 8 9 10 11 12

| 19

= YES!
= 88

= NO!
= 16

= NO!



= We are using a hash table for a space/time tradeoff

= Lots of space means we can get down to O(a)

= How much space do we need?

= How do we pick a good hashing function?

= What happens if two values collide (map to the same location)




= Determine if a string has any duplicate characters

= Weak!

= Okay, but do it in O(m) time where mis the length of the
string



Hash Functions




= We want a function that will map data to buckets in our hash
table

= Important characteristics:

= Efficient: It must be quick to execute

= Deterministic: The same data must always map to the same bucket
= Uniform: Data should be mapped evenly across all buckets



= We want a function h(k) that computes a hash for every key k

= The simplest way of guaranteeing that we hash only into legal
locations is by setting h(k) to be:

= h(k) =k mod N where N is the size of the hash table

= To avoid crowding the low indexes, N should be prime

= |fitis not feasible for N to be prime, we can add another step
using a prime p > N:

= h(k) = (kmod p) mod N



= Pros

= Simple
= Fast
= Easytodo

= Good if you know nothing about the data
= Cons

= Prime numbers are involved (What's the nearest prime to the size you
want?)

= Uses no information about the data

= If the data is strangely structured (multiples of p, for example) it could all
hash to the same location



= Break the key into parts and combine those parts
= Shift folding puts the parts together without transformations
= SSN: 123-45-6789 is broken up and summed 123 + 456 + 789 = 1,368,
then modded by N, probably
= Boundary folding puts the parts together reversing every
other part of the key

= SSN: 123-45-6789 is broken up and summed 123 + 654 + 789 = 1,566,
then modded by N, probably



= Pros

= Relatively Simple and Fast
= Mixes up the data more than division

= Points out a way to turn strings or other non-integer data into an
integer that can be hashed

= Transforms the numbers so that patterns in the data are likely to be
removed

= Cons
= Primes are still involved
= Uses no special information about the data



= Square the key, then take the "middle" numbers out of the

result
= Example: key = 3,121 then 3,1212 = 9,740,641 and the hash

value is 406
= One nice thing about this method is that we can make the

table size be a power of 2
= Then, we can take the log, N middle bits out of the squared
value using bitwise shifts and masking



= Pros

= Randomizes the data a lot
= Fast when implemented correctly

= Primes are not necessary
= Cons

= Uses no special information about the data



= Remove part of the key, especially if it is useless
= Example:

= Many SSN numbers for Indianapolis residents begin with 313

= Removing the first 3 digits will, therefore, not reduce the
randomness very much, provided that you are looking at a list of
SSNs for Indianapolis residents



= Pros

= Uses information about the key

= Can be efficient and easy to implement
= Cons

= Requires special knowledge

= Careless extraction of digits can give poor hashing performance



= Change the number to a different base

= Then, treat the base as if it were still base 10 and use the
division method

= Example: 345 is 423 in base g

= If N =100, we could take the mod and put 345 in location 23



= Pros

= If many numbers have similar final digits or values mod N (or p), they
can be randomized by this method

= Cons
= Choice of base can be difficult
= Effects are unpredictable
= Not as quick as many of the other methods
= Values that didn't collide before might now collide



Collisions




= What happens when you go to put a value in a bucket and one is
already there?

= There are a couple basic strategies:
= Open addressing
= Chaining

= Load factor is the number of items divided by the number of
buckets

= 0isan empty hash table
= 0.5 is a half full hash table
= 1is a completely full hash table



= With open addressing, we look for some empty spot in the
hash table to put the item
= There are a few common strategies

= Linear probing
= Quadratic probing
= Double hashing



= With linear probing, you add a step size until you reach an
empty location or visit the entire hash table

= Let h(k) be the initial hash function

= h(k,i)=h(k) +ci, fori=o0, 1, 2, 3...

104

HEEEEEEEEEE

0 1 2 3 4 5 6 7 8 9 10 11 12
= Example: Add 6 with a step size of 5

| {o] | fefrde] | fe] |

0 1 2 3 4 5 6 7 8 9 10 11 12

104




= For quadratic probing, use a quadratic function to try new
locations:
= h(k,ij)=h(k) +c,i+c,? fori=o0,1, 2, 3...

104

ol 1 Peefrf [ ] e |

0 1 2 3 4 5 6 7 8 9 10 11 12

= Example: Add 6 withc, =o0andc,=1

| Lol ] fefr ] | Jele] |

0 1 2 3 4 5 6 7 8 9 10 11 12

104




= For double hashing, do linear probing, but with a step size
dependent on the data:
= h(k,i)=h_(k)+i-h(k), fori=o0,1, 2, 3...

104

HEEEEEEEEEE

0 1 2 3 4 5 6 7 8 9 10 11 12

= Example: Add 6 with h,(k) = (kmod 7) + 1

of {o] | feofrf | | feof |

0 1 2 3 4 5 6 7 8 9 10 11 12

104




= Open addressing schemes are fast and relatively simple
= Linear and quadratic probing can have clustering problems

= One collision means more are likely to happen
= Double hashing has poor data locality
= [tisimpossible to have more items than there are buckets
= Performance degrades seriously with load factors over 0.7



= Make each hash table entry a linked list

= |[f you want to insert something at a location, simply insert it
into the linked list

= This is the most common kind of hash table

= Chaining can behave well even if the load factor is greater
thana

= Chaining is sensitive to bad hash functions

= No advantage if every item is hashed to the same location



= Deletion can be a huge problem

= Easy for chaining

= Highly non-trivial for open addressing

= Consider our linear probing example with a step size of g

104

| {o] | fefrde] | fe] |

0 1 2 3 4 5 6 7 8 9 10 11 12

= Delete 19
= Now see if 6 exists



= |f you know all the values you are going to see ahead of time,
it is possible to create a minimal perfect hash function

= A minimal perfect hash function will hash every value without
collisions and fill your hash table

= Cichelli's method and the FHCD algorithm are two ways to do
It

= Both are complex

= Look them up if you find yourself in this situation



Upcoming




= Implementing hash tables
= Map in the JCF

= HashMap

= TreeMap
= Introduction to graphs



= Finish Project 2

= Due tonight by midnight!
= Start Assignment 4
= Keep reading 3.4
= Read 4.1
= No class on Monday!
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