Week 8 - Friday

COMP 2100

= What did we talk about last time?

= 2-3 and red-black tree practice
= AVL trees
= Balancing trees by construction

Questions?

Project 2

Assignment 4

Hanby Elementary in Westerville is looking for mentors for two
orograms
FIRST LEGO League (Tuesdays 2:45—4:45 PM)

= Students research real-world problems and build and program LEGO EV3
Mindstorm robots to complete themed missions.

Girls Who Code (Mondays 2:45-3:45 PM)

= Girls Who Code students work on projects such as app or game design,
website creation, and 3D printing prototypes that solve real-world
problems.

Both are great opportunities to give back to the community and

build your resume

If interested, send me an e-mail

Hash Tables

= We can define a symbol table ADT with a few essential operations:
= put(Key key, Value value)
Put the key-value pair into the table
get(Key key):
Retrieve the value associated with key
delete(Key key)
Remove the value associated with key
contains(Key key)
See if the table contains a key
ISEmpty()
size()
= It's also useful to be able to iterate over all keys

= We have been talking a lot about trees and other ways to keep
ordered symbol tables

= Ordered symbol tables are great, but we may not always need
that ordering

= Keeping an unordered symbol table might allow us to improve
our running time

= Balanced binary search trees give us:

= O(log n) time to find a key
= O(log n) time to do insertions and deletions

= Can we do better?
= What about:

= O(2) time to find a key
= O(1) todo an insertion or a deletion

= We make a huge array, so big that we'll have more spaces in
the array than we expect data values
= We use a hashing function that maps keys to indexes in the

array
= Using the hashing function, we know where to put each key
but also where to look for a particular key

= Let's make a hash table to store integer keys
= Qur hash table will be 13 elements long
= Our hashing function will be simply modding each value by 13

= Insert these keys: 3, 19, 7, 104, 89

104

0 1 2 3 4 5 6 7 8 9 10 11 12

= Find these keys:

104

HEEEEEEEEEE

0 1 2 3 4 5 6 7 8 9 10 11 12

| 19

= YES!
= 88

= NO!
= 16

= NO!

= We are using a hash table for a space/time tradeoff

= Lots of space means we can get down to O(a)

= How much space do we need?

= How do we pick a good hashing function?

= What happens if two values collide (map to the same location)

= Determine if a string has any duplicate characters

= Weak!

= Okay, but do it in O(m) time where mis the length of the
string

Hash Functions

= We want a function that will map data to buckets in our hash
table

= Important characteristics:

= Efficient: It must be quick to execute

= Deterministic: The same data must always map to the same bucket
= Uniform: Data should be mapped evenly across all buckets

= We want a function h(k) that computes a hash for every key k

= The simplest way of guaranteeing that we hash only into legal
locations is by setting h(k) to be:

= h(k) =k mod N where N is the size of the hash table

= To avoid crowding the low indexes, N should be prime

= |fitis not feasible for N to be prime, we can add another step
using a prime p > N:

= h(k) = (kmod p) mod N

= Pros

= Simple
= Fast
= Easytodo

= Good if you know nothing about the data
= Cons

= Prime numbers are involved (What's the nearest prime to the size you
want?)

= Uses no information about the data

= If the data is strangely structured (multiples of p, for example) it could all
hash to the same location

= Break the key into parts and combine those parts
= Shift folding puts the parts together without transformations
= SSN: 123-45-6789 is broken up and summed 123 + 456 + 789 = 1,368,
then modded by N, probably
= Boundary folding puts the parts together reversing every
other part of the key

= SSN: 123-45-6789 is broken up and summed 123 + 654 + 789 = 1,566,
then modded by N, probably

= Pros

= Relatively Simple and Fast
= Mixes up the data more than division

= Points out a way to turn strings or other non-integer data into an
integer that can be hashed

= Transforms the numbers so that patterns in the data are likely to be
removed

= Cons
= Primes are still involved
= Uses no special information about the data

= Square the key, then take the "middle" numbers out of the

result
= Example: key = 3,121 then 3,1212 = 9,740,641 and the hash

value is 406
= One nice thing about this method is that we can make the

table size be a power of 2
= Then, we can take the log, N middle bits out of the squared
value using bitwise shifts and masking

= Pros

= Randomizes the data a lot
= Fast when implemented correctly

= Primes are not necessary
= Cons

= Uses no special information about the data

= Remove part of the key, especially if it is useless
= Example:

= Many SSN numbers for Indianapolis residents begin with 313

= Removing the first 3 digits will, therefore, not reduce the
randomness very much, provided that you are looking at a list of
SSNs for Indianapolis residents

= Pros

= Uses information about the key

= Can be efficient and easy to implement
= Cons

= Requires special knowledge

= Careless extraction of digits can give poor hashing performance

= Change the number to a different base

= Then, treat the base as if it were still base 10 and use the
division method

= Example: 345 is 423 in base g

= If N =100, we could take the mod and put 345 in location 23

= Pros

= If many numbers have similar final digits or values mod N (or p), they
can be randomized by this method

= Cons
= Choice of base can be difficult
= Effects are unpredictable
= Not as quick as many of the other methods
= Values that didn't collide before might now collide

Collisions

= What happens when you go to put a value in a bucket and one is
already there?

= There are a couple basic strategies:
= Open addressing
= Chaining

= Load factor is the number of items divided by the number of
buckets

= 0isan empty hash table
= 0.5 is a half full hash table
= 1is a completely full hash table

= With open addressing, we look for some empty spot in the
hash table to put the item
= There are a few common strategies

= Linear probing
= Quadratic probing
= Double hashing

= With linear probing, you add a step size until you reach an
empty location or visit the entire hash table

= Let h(k) be the initial hash function

= h(k,i)=h(k) +ci, fori=o0, 1, 2, 3...

104

HEEEEEEEEEE

0 1 2 3 4 5 6 7 8 9 10 11 12
= Example: Add 6 with a step size of 5

| {o] | fefrde] | fe] |

0 1 2 3 4 5 6 7 8 9 10 11 12

104

= For quadratic probing, use a quadratic function to try new
locations:
= h(k,ij)=h(k) +c,i+c,? fori=o0,1, 2, 3...

104

ol 1 Peefrf [] e |

0 1 2 3 4 5 6 7 8 9 10 11 12

= Example: Add 6 withc, =o0andc,=1

| Lol] fefr] | Jele] |

0 1 2 3 4 5 6 7 8 9 10 11 12

104

= For double hashing, do linear probing, but with a step size
dependent on the data:
= h(k,i)=h_(k)+i-h(k), fori=o0,1, 2, 3...

104

HEEEEEEEEEE

0 1 2 3 4 5 6 7 8 9 10 11 12

= Example: Add 6 with h,(k) = (kmod 7) + 1

of {o] | feofrf | | feof |

0 1 2 3 4 5 6 7 8 9 10 11 12

104

= Open addressing schemes are fast and relatively simple
= Linear and quadratic probing can have clustering problems

= One collision means more are likely to happen
= Double hashing has poor data locality
= [tisimpossible to have more items than there are buckets
= Performance degrades seriously with load factors over 0.7

= Make each hash table entry a linked list

= |[f you want to insert something at a location, simply insert it
into the linked list

= This is the most common kind of hash table

= Chaining can behave well even if the load factor is greater
thana

= Chaining is sensitive to bad hash functions

= No advantage if every item is hashed to the same location

= Deletion can be a huge problem

= Easy for chaining

= Highly non-trivial for open addressing

= Consider our linear probing example with a step size of g

104

| {o] | fefrde] | fe] |

0 1 2 3 4 5 6 7 8 9 10 11 12

= Delete 19
= Now see if 6 exists

= |f you know all the values you are going to see ahead of time,
it is possible to create a minimal perfect hash function

= A minimal perfect hash function will hash every value without
collisions and fill your hash table

= Cichelli's method and the FHCD algorithm are two ways to do
It

= Both are complex

= Look them up if you find yourself in this situation

Upcoming

= Implementing hash tables
= Map in the JCF

= HashMap

= TreeMap
= Introduction to graphs

= Finish Project 2

= Due tonight by midnight!
= Start Assignment 4
= Keep reading 3.4
= Read 4.1
= No class on Monday!

	COMP 2100
	Last time
	Questions?
	Project 2
	Assignment 4
	Call for Mentors
	Hash Tables
	Recall: Symbol table ADT
	Unordered symbol table
	Hash tables: motivation
	Hash tables: theory
	Hash table: example
	Hash table: example
	Hash table: example
	Hash table: issues
	Example
	Hash Functions
	What are we looking for?
	Division
	Division Pros and Cons
	Folding
	Folding Pros and Cons
	Mid-Square Function
	Mid-Square Pros and Cons
	Extraction
	Extraction Pros and Cons
	Radix Transformation
	Radix Transformation Pros and Cons
	Collisions
	The real problem with hash tables
	Open addressing
	Linear probing
	Quadratic probing
	Double hashing
	Open addressing pros and cons
	Chaining
	Deletion
	Perfect Hash Functions
	Upcoming
	Next time…
	Reminders

